
Nov. 6, 2013 Solution
Analysis I - Final Examination - Semester I

1. Suppose {an}n≥1 is a bounded sequence and {bn}n≥1 is a sequence converging to 0 as n tends to
∞. Show that {anbn}n≥1 conveerges to 0 as n tends to ∞.

Solution: Since {an}n≥1 is bounded, there exists M > 0 such that |an| ≤ M for all n ≥ 1. Let
ε > 0. Since {bn}n≥1 converges to 0, there exists N ∈ N such that

|bn| <
ε

M
for all n ≥ N

Now
|anbn| ≤M |bn| < M

ε

M
= ε for all n ≥ N

Hence {anbn}n≥1 conveerges to 0 as n tends to ∞. �

2. Let {xn}n≥1 be a bounded sequence of real numbers and c = lim infn→∞ xn. Show that for any ε > 0
the set Mε = {n : xn < c− ε} is a finite set.

Solution: Note that c = lim infn→∞ xn = supn∈N infk≥n xk. Suppose Mε = {n : xn < c − ε} is
an infinite set, then for any n ∈ N there exists a kn ∈ Mε such that kn > n. This implies that
infk≥n xk < c− ε. This implies that c = supn∈N infk≥n xk ≤ c− ε. This is a contradiction as ε > 0.
Hence Mε is a finite set. �

3. Show that the polynomial p(x) = 3x5 + 2x3 + 6x+ 5 has exactly one real root.

Solution: By the fundamental theorem of algebra p has all its roots in C. Since p is an odd degree
polynomial and since the complex roots of a real polynomial occur as conjugate pairs, p must have
a real root.
Note that p′(x) = 15x4 + 6x2 + 6 for all x ∈ R and p′(x) > 0 for all x ∈ R. Therefore p is a strictly
increasing function on R. Hence it can have only one real root.
Thus p has exactly one real root. �

4. Let X be the set of finite subsets of N. Show that X is countable.

Solution: Note that N × N = ∪n∈N{n} × N, a countable union of countable sets, hence it is
countable. Thyerefore by induction N× N× · · · × N︸ ︷︷ ︸

n-times

is countable , for all n. Hence

Y :=

∞⋃
n=0

N× N× · · · × N︸ ︷︷ ︸
n-times

is countable

where n = 0 corresponds to the empty set φ. Now define ϕ : X → Y as follows. Define ϕ(φ) = φ.
Let A = {x1, x2, ..., xn} ∈ X be non-empty, where xi ∈ N, x1 < x2 < ... < xn. Then d efine
ϕ(A) = (x1, x2, ..., xn) ∈ Y. Then clearly ϕ is injective. Hence X is countable.

5. State and prove the mean value theorem (you may assume Rolle’s theorem).
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Solution:
Staement: Suppose that f is continuous on a closed interval I := [a, b], and that f has a derivative
in the open interval (a, b). Then there exists at least one point c in (a, b) such that

f(b)− f(a) = f ′(c)(b− a)

Proof: Copnsider the function ϕ defined on I by

ϕ(x) := f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Then ϕ is continuous on [a, b], differentiable on (a, b) and ϕ(a) = ϕ(b) = 0. Therefore by Rolle’s
theorem, there exists a point c in (a, b) such that

0 = ϕ′(c) = f ′(c)− f(b)− f(a)

b− a

Hence, f(b)− f(a) = f ′(c)(b− a). �

6. Let f, g : [0, 1] → R be continuous functions. Define h, k on [0, 1] by h(x) = min{f(x), g(x)} and
k(x) = max{f(x), g(x)}. Show that h, k are continuous. Give examples to show that both h, k need
not be differentiable, even if f, g are differentiable.

Solution: Note that h(x) = |f(x)−g(x)|+f(x)+g(x)
2 , k(x) = −( |f(x)−g(x)|−f(x)−g(x)2 ). Now since

x 7→ |x| is continuous and composition of continuous functions is continuous h, k are continuous.
Example: Let f, g : [0, 1] → R be defined by f(x) = x − 1

2 , g(x) = 1
2 − x for all x ∈ [0, 1]. Then

f, g are differentible on [0, 1] and

h(x) =

{
1
2 − x if 0 ≤ x ≤ 1

2 ;
x− 1

2 if 1
2 ≤ x ≤ 1.

and k(x) = −h(x)

Both h and k are not differentiable at 1
2 . �

7. Suppose a : R→ R is a function such that

a(
x+ y

2
) ≤ a(x) + a(y)

2
, x, y ∈ R

(i) Show that for all n ≥ 2 and for all x1, x2, ..., xn in R

a

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

a(xi)

(ii) If a is continuous show that

a(px+ (1− p)y) ≤ pa(x) + (1− p)a(y)

for all x, y ∈ R and 0 ≤ p ≤ 1. (Hint: First prove the result for rational numbers p.)

Solution:
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(i) We have to prove that for all n ≥ 2 and for all x1, x2, ..., xn in R

a

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

a(xi) (*)

First we shall prove this all n of the form n = 2k, k ∈ N. This we prove by induction on k. Note
that (*) is true for k = 1 by hypothesis. Assume that (*) is true for all n = 2k, k = 1, 2, ...,m.
Let x1, x2, ..., x2m+1 ∈ R, then

a

 1

2m+1

2m+1∑
i=1

xi

 = a

(
1

2

(
1

2m

2m∑
i=1

xi +
1

2m

2m∑
i=1

x2m+i

))

≤ 1

2
a

(
1

2m

2m∑
i=1

xi

)
+

1

2
a

(
1

2m

2m∑
i=1

x2m+i

)
(by hypothesis)

≤ 1

2

(
1

2m

2m∑
i=1

a(xi)

)
+

1

2

(
1

2m

2m∑
i=1

a(x2m+i)

)
(by induction hypothesis)

=
1

2m+1

2m+1∑
i=1

a(xi)

This proves it for all n = 2k, k ∈ N.
Now let n ∈ N, 2k < n < 2k+1. Let y := 1

n

∑n
i=1 xi,m := 2k+1 − n. Consider

a(y) = a( 1
2k+1 (x1 + x2 + ...+ xn +m · y)) ≤ 1

2k+1 (
∑n
i=1 a(xi) +ma(y)) , hence

(2k+1 −m)a(y) ≤
∑n
i=1 a(xi). That is a(y) ≤ 1

n

∑n
i=1 a(xi). This completes the proof.

(ii) Let p = m
n ,m < n. Then 1− p = n−m

n and

a(px+ (1− p)y) = a(
mx+ (n−m)y

n
)

≤ 1

n
(ma(x) + (n−m)a(y)) from (i)

= pa(x) + (1− p)a(y).

Hence (ii) is true for all rational p, 0 < p < 1. Now since the set {p ∈ Q : 0 < p < 1} is dense
in [0, 1] and a is contiuous (ii) holds for all 0 ≤ p ≤ 1.
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