Suppose {a_n}_{n≥1} is a bounded sequence and {b_n}_{n≥1} is a sequence converging to 0 as n tends to ∞. Show that {a_nb_n}_{n≥1} conveerges to 0 as n tends to ∞.

Solution: Since $\{a_n\}_{n\geq 1}$ is bounded, there exists M > 0 such that $|a_n| \leq M$ for all $n \geq 1$. Let $\epsilon > 0$. Since $\{b_n\}_{n\geq 1}$ converges to 0, there exists $N \in \mathbb{N}$ such that

$$|b_n| < \frac{\epsilon}{M}$$
 for all $n \ge N$

Now

$$|a_n b_n| \le M |b_n| < M \frac{\epsilon}{M} = \epsilon$$
 for all $n \ge N$

Hence $\{a_n b_n\}_{n \ge 1}$ conveerges to 0 as n tends to ∞ .

2. Let $\{x_n\}_{n\geq 1}$ be a bounded sequence of real numbers and $c = \liminf_{n\to\infty} x_n$. Show that for any $\epsilon > 0$ the set $M_{\epsilon} = \{n : x_n < c - \epsilon\}$ is a finite set.

Solution: Note that $c = \liminf_{n \to \infty} x_n = \sup_{n \in \mathbb{N}} \inf_{k \ge n} x_k$. Suppose $M_{\epsilon} = \{n : x_n < c - \epsilon\}$ is an infinite set, then for any $n \in \mathbb{N}$ there exists a $k_n \in M_{\epsilon}$ such that $k_n > n$. This implies that $\inf_{k \ge n} x_k < c - \epsilon$. This implies that $c = \sup_{n \in \mathbb{N}} \inf_{k \ge n} x_k \le c - \epsilon$. This is a contradiction as $\epsilon > 0$. Hence M_{ϵ} is a finite set.

3. Show that the polynomial $p(x) = 3x^5 + 2x^3 + 6x + 5$ has exactly one real root.

Solution: By the fundamental theorem of algebra p has all its roots in \mathbb{C} . Since p is an odd degree polynomial and since the complex roots of a real polynomial occur as conjugate pairs, p must have a real root.

Note that $p'(x) = 15x^4 + 6x^2 + 6$ for all $x \in \mathbb{R}$ and p'(x) > 0 for all $x \in \mathbb{R}$. Therefore p is a strictly increasing function on \mathbb{R} . Hence it can have only one real root. Thus p has exactly one real root.

4. Let X be the set of finite subsets of \mathbb{N} . Show that X is countable.

Solution: Note that $\mathbb{N} \times \mathbb{N} = \bigcup_{n \in \mathbb{N}} \{n\} \times \mathbb{N}$, a countable union of countable sets, hence it is countable. Therefore by induction $\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ is countable, for all n. Hence

$$Y := \bigcup_{n=0}^{\infty} \underbrace{\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}}_{\text{n-times}} \text{ is countable}$$

where n = 0 corresponds to the empty set ϕ . Now define $\varphi : X \to Y$ as follows. Define $\varphi(\phi) = \phi$. Let $A = \{x_1, x_2, ..., x_n\} \in X$ be non-empty, where $x_i \in \mathbb{N}, x_1 < x_2 < ... < x_n$. Then d efine $\varphi(A) = (x_1, x_2, ..., x_n) \in Y$. Then clearly φ is injective. Hence X is countable.

5. State and prove the mean value theorem (you may assume Rolle's theorem).

Solution:

Staement: Suppose that f is continuous on a closed interval I := [a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one point c in (a, b) such that

$$f(b) - f(a) = f'(c)(b - a)$$

Proof: Copnsider the function φ defined on *I* by

$$\varphi(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then φ is continuous on [a, b], differentiable on (a, b) and $\varphi(a) = \varphi(b) = 0$. Therefore by Rolle's theorem, there exists a point c in (a, b) such that

$$0 = \varphi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

Hence, f(b) - f(a) = f'(c)(b - a).

6. Let $f, g: [0,1] \to \mathbb{R}$ be continuous functions. Define h, k on [0,1] by $h(x) = \min\{f(x), g(x)\}$ and $k(x) = \max\{f(x), g(x)\}$. Show that h, k are continuous. Give examples to show that both h, k need not be differentiable, even if f, g are differentiable.

Solution: Note that $h(x) = \frac{|f(x)-g(x)|+f(x)+g(x)|}{2}$, $k(x) = -(\frac{|f(x)-g(x)|-f(x)-g(x)|}{2})$. Now since $x \mapsto |x|$ is continuous and composition of continuous functions is continuous h, k are continuous. **Example:** Let $f, g: [0,1] \to \mathbb{R}$ be defined by $f(x) = x - \frac{1}{2}$, $g(x) = \frac{1}{2} - x$ for all $x \in [0,1]$. Then f, g are differentiable on [0,1] and

$$h(x) = \begin{cases} \frac{1}{2} - x & \text{if } 0 \le x \le \frac{1}{2}; \\ x - \frac{1}{2} & \text{if } \frac{1}{2} \le x \le 1. \end{cases} \text{ and } k(x) = -h(x)$$

Both h and k are not differentiable at $\frac{1}{2}$.

7. Suppose $a : \mathbb{R} \to \mathbb{R}$ is a function such that

$$a(\frac{x+y}{2}) \le \frac{a(x)+a(y)}{2}, \qquad x, y \in \mathbb{R}$$

(i) Show that for all $n \geq 2$ and for all $x_1, x_2, ..., x_n$ in \mathbb{R}

$$a\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \leq \frac{1}{n}\sum_{i=1}^{n}a(x_{i})$$

(ii) If a is continuous show that

$$a(px + (1 - p)y) \le pa(x) + (1 - p)a(y)$$

for all $x, y \in \mathbb{R}$ and $0 \le p \le 1$. (Hint: First prove the result for rational numbers p.)

Solution:

(i) We have to prove that for all $n \geq 2$ and for all $x_1, x_2, ..., x_n$ in \mathbb{R}

$$a\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \leq \frac{1}{n}\sum_{i=1}^{n}a(x_{i}) \tag{(*)}$$

First we shall prove this all n of the form $n = 2^k, k \in \mathbb{N}$. This we prove by induction on k. Note that (*) is true for k = 1 by hypothesis. Assume that (*) is true for all $n = 2^k, k = 1, 2, ..., m$. Let $x_1, x_2, ..., x_{2^{m+1}} \in \mathbb{R}$, then

$$a\left(\frac{1}{2^{m+1}}\sum_{i=1}^{2^{m+1}}x_i\right) = a\left(\frac{1}{2}\left(\frac{1}{2^m}\sum_{i=1}^{2^m}x_i + \frac{1}{2^m}\sum_{i=1}^{2^m}x_{2^m+i}\right)\right)$$

$$\leq \frac{1}{2}a\left(\frac{1}{2^m}\sum_{i=1}^{2^m}x_i\right) + \frac{1}{2}a\left(\frac{1}{2^m}\sum_{i=1}^{2^m}x_{2^m+i}\right) \text{ (by hypothesis)}$$

$$\leq \frac{1}{2}\left(\frac{1}{2^m}\sum_{i=1}^{2^m}a(x_i)\right) + \frac{1}{2}\left(\frac{1}{2^m}\sum_{i=1}^{2^m}a(x_{2^m+i})\right) \text{ (by induction hypothesis)}$$

$$= \frac{1}{2^{m+1}}\sum_{i=1}^{2^{m+1}}a(x_i)$$

This proves it for all $n = 2^k, k \in \mathbb{N}$. Now let $n \in \mathbb{N}, 2^k < n < 2^{k+1}$. Let $y := \frac{1}{n} \sum_{i=1}^n x_i, m := 2^{k+1} - n$. Consider $a(y) = a(\frac{1}{2^{k+1}}(x_1 + x_2 + ... + x_n + m \cdot y)) \le \frac{1}{2^{k+1}}(\sum_{i=1}^n a(x_i) + ma(y))$, hence $(2^{k+1} - m)a(y) \le \sum_{i=1}^n a(x_i)$. That is $a(y) \le \frac{1}{n} \sum_{i=1}^n a(x_i)$. This completes the proof. (ii) Let $p = \frac{m}{n}, m < n$. Then $1 - p = \frac{n-m}{n}$ and

$$a(px + (1 - p)y) = a(\frac{mx + (n - m)y}{n})$$

$$\leq \frac{1}{n}(ma(x) + (n - m)a(y)) \text{ from (i)}$$

$$= pa(x) + (1 - p)a(y).$$

Hence (ii) is true for all rational $p, 0 . Now since the set <math>\{p \in \mathbb{Q} : 0 is dense in <math>[0, 1]$ and a is continuous (ii) holds for all $0 \le p \le 1$.